High Dimensional Portfolio Selection with Cardinality Constraints

主讲人 王学钦 简介 <p>The expanding number of assets offers more opportunities for investors but poses new challenges for modern portfolio management (PM). As a central plank of PM, portfolio selection by expected utility maximization (EUM) faces uncontrollable estimation and optimization errors in ultrahigh-dimensional scenarios. Past strategies for high-dimensional PM mainly concern only large-cap companies and select many stocks, making PM impractical. We propose a sample-average approximation-based portfolio strategy to tackle the aforementioned difficulties with cardinality constraints. Our strategy bypasses the estimation of mean and covariance, the Chinese walls in high-dimensional scenarios. Empirical results on S&amp;P 500 and Russell 2000 show that an appropriate number of carefully chosen assets leads to better out-of-sample mean variance efficiency. On Russell 2000, our best portfolio profits twice more than the best mean-variance portfolio but reduces the maximum drawdown by 47%. While no more than 30 assets can form diversified portfolios for S&amp;P 500, near 100 assets are needed for Russell 2000 due to higher volatility and lower signal-noise ratios. Our strategy balances the trade-off among the return, the risk, and the number of assets with cardinality constraints. Therefore, we provide a theoretically sound and computationally efficient strategy to make PM practical in the growing global financial market.</p>
时间 2022-06-07(Tuesday)10:30-11:40 地点 经济楼N302
讲座语言 中文 主办单位 厦门大学经济学院、王亚南经济研究院、邹至庄经济研究院
承办单位 厦门大学经济学院统计学与数据科学系 类型 独立讲座
联系人信息 主持人 钟威
专题网站 专题
主讲人简介 <p>王学钦,中国科学技术大学管理学院教授,2003年毕业于纽约州立大学宾汉姆顿分校,教育部高层次人才入选者。现担任教育部高等学校统计学类专业教学指导委员会委员、中国现场统计研究会副理事长、统计学国际期刊<em>JASA</em>等的Associate Editor、高等教育出版社<em>Lecture Notes: Data Science, Statistics and Probability</em>系列丛书的副主编。</p> 期数
独立讲座